

IBM Technologies for GRID Solutions IT Trends Today and for the Future

© 2009 IBM Corporation

Global Technology Outlook – Statements from the Past

"I think there is a world market

for maybe five computers."

Thomas Watson, chairman of IBM, 1943

"Computers in the future may weigh no more than 1.5 tons."

Popular Mechanics, 1949

"There is no reason anyone would want a computer in their home." Ken Olsen, founder of DEC, 1977

> "640K ought to be enough for anybody."

Bill Gates, 1981

"Prediction is difficult, especially about the future"

Yogi Berra

© 2009 IBM Corporation

History of Innovations

60 Years of World Class Research

Typical mathematical formula: D=B2-4AC Equivalent FORTRAN statement:

One-Device

Memory Cell

1957: FORTRAN 1966:

1967:

Fractals

Database

1971: Speech Recognition

Disk

1979:

Thin Film Winchester Recording Heads

1986: Scanning Tunneling Microscope

Nobel Prizes: 1987: High Temperature Superconductivity

1990: Chemically Amplified **Photoresists**

1993: RS/6000 SP 1996,97: Deep Blue

Copper

Interconnect Wiring

1998:

1948: SSEC

Silicon-on-Insulator

RISC

1998: Microdrive

2002: Millipede

2004: Blue Gene/L The fastest supercomputer in the world

2006: **5-stage Carbon Nanotube Ring Oscillator**

IBM Research Worldwide 3000 Researchers in eight labs around the world Zurich Watson Yorktown Heights, NY Rueschlikon, Switzerland 100 Almaden Tokyo San Jose, California Yamato, Japan 1 1111 1111 18 A. -----China Austin Beijing, China Austin, Texas Haifa India Delhi, India Haifa, Israel

IBM Research Ecosystem

Research at the core of IBM and client relationships

Culture of Innovation External Recognition

Research's Strategic Thrusts From Technology to Services Research

Diversity of Disciplines at IBM Research

Sciences

Physics

Management & Engineering

Deep Computing – Main Topics

- As deeper understanding of physics and biology lifts the human spirit,
- As better physical and biological models are devised,
- As volumes of experimental data are collected,
- As the Internet grows to encompass more people and institutions,
- As pervasive devices connect to the network,
- As more business is done online,
 - A wealth of data is becoming available in digital form.
- Finding the value buried in that data will be an increasingly powerful tool
 - For business and for society.
- Deep computing combines several techniques to solve extremely complex problems in this sea of digital data:
 - Advanced mathematics
 - Domain-specific knowledge

Specialized softwarePowerful hardware

Deep Computing – Trends (based on CloudComputing)

Computation environment definition

A multi-server system, comprised of interconnected computers and associated networking and storage devices, that are unified via systems management, networking and middleware software to accomplish a specific purpose.

 Computation environments are comprised of standard components that could be used separately in other types of computing configurations

- Compute power (servers)
- Network
- Local and/or external storage for data
- Systems management software and middleware
- Operating System
- Applications

"Commodity-based computing"

Aristotle

"...the true object of architecture is not bricks, mortar, or timber, but the house; and so the principal object of natural philosophy is not the material elements, but their composition, and the totality of the substance, independently of which they have no existence..." -- Aristotle

The whole is greater than the sum of the parts

Deep Computing Building Blocks

Deep Computing Components and Implementation

Cloud Computing Delivery Models

An Effective Cloud Deployment is Built on a Dynamic Infrastructure

...leveraging virtualization, standardization and automation to free up operational budget for new investment.

New deployment choices

© 2009 IBM Corporation

Deep Computing Applications – Spectrum of Customers

Deep Computing - Results

Deep Computing - Customers

#	Ven- dor	Rmax TFlops	Installation
1	IBM	1105	DOE/NSSA/LANL (QS22/LS21)
2	Cray	1059	Oak Ridge NL - Jaguar (XT5 QC 2.3 GHz Opteron)
3	IBM	825.5	FZJ Juelich Upgrade (72 racks Blue Gene/P)
4	SGI	487.0	NASA Ames (Altix QC 3.0/2.8 Xeon)
5	ІВМ	478.2	DOE/NSSA/LLNL (104 racks BlueGene/L)
6	Cray	463.3	NICS U Tenn - Kraken New (XT5 QC 2.3 GHz Opteron)
7	ІВМ	450.3	Argonne Natl Lab (40 racks Blue Gene/P)
8	Sun	433.2	Texas Adv Comp Center (QC 2.3 GHz Opteron)
9	IBM	415.7	DOE/NSSA/LLNL New (36 racks Blue Gene/P)
10	Bull	274.8	FZJ Juelich New (QC 2.93 GHz Nehalem)

#	Ven- dor	Rmax TFlops	Installation
11	Cray	266.3	NERSC/LBNL (XT4 QC 2.3 GHz Opteron)
12	Cray	205.0	Oak Ridge Natl Lab (XT4 QC 2.1 GHz Opteron)
13	Cray	204.2	Sandia NL – Red Storm (XT3/XT4 DC/QC Opteron)
14	IBM	185.2	KAUST (16 racks Blue Gene/P)
15	Dawn -ing	180.6	Shanghai SC Ctr (QC Opteron/Windows HPC)
16	IBM	168.6	SciNet/U of Toronto (Nehalem iDataPlex)
17	SGI	133.2	New Mexico CAC (Altix Clovertown)
18	HP	132.8	TATA Research Lab (Clovertown)
19	Appro	131.6	LLNL (Altix QC Xeon)
20	SGI	128.4	GENCI-CINES (QC Opteron)

Deep Computing – Full Picture (Summary)

In the end, it's not about the technology. It's what you do with it that counts. IBM will:

- Continue to innovate across the whole systems stack to deliver leadership performance and usability.
- Help solve problems that are currently intractable or not cost-effective.
- Accelerate discovery in science, engineering, and business

