

5th International Workshop on Grid Computing for Complex Problems (Vendor session)

Institute of Informatics Slovak Academy of Sciences in Bratislava

Monday 26th Oct. 2009

HIGH PERFORMANCE COMPUTING FROM SUN

Dalibor Kubacek GSE IT Architect Sun Microsystems Slovakia, spol. r.o.

HPC & Grid

High Performance Computing (HPC)

- is about using concentrated compute power to address highly complex problems, business critical analysis, or computationally intensive workloads – faster and more efficiently
- the use of parallel processing for running advanced application programs efficiently, reliably and quickly
- the term applies especially to systems that function above a teraflop or 10¹² floating-point operations per second
 - Some users need to complete work faster.
 - Some users need to complete more work.
 - Some users need to do both...and more.

HPC & Grid

Grid

- The CRRID Busies of a New Construction Busies of a new Construction Co
- Originally born out of High Performance Computing but relevant to wider markets
- Oriented to enhancing the network of things rather than making applications run faster
- "A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive and inexpensive access to high-end computational capabilities"
- A universal computing infrastructure that builds on the power of the Net and enables more efficient computation, collaboration, and communication

HPC & Grid

Grid

Some academics define grid computing as the dynamic sharing of sets of computing resources by virtual organizations who come together for a particular purpose. These resources and their interconnects are not fixed. A way of using many heterogeneous resources to perform many kinds of tasks, accessible from many places by many people

Grid can mean a variety of things to various organizations and marketers (*).

Technical Workloads and Solutions

Multithread

(Throughput computing: Multiple applications – single thread)

Architecture / Systems June 2009

Interconnect Family / Systems June 2009

Processor Family / Systems June 2009

Operating system Family / Systems June 2009

Performance

Efficiency

Open

Our Vision

To provide our customers with a competitive edge through innovative infrastructure designed to solve their most dataintensive and computationally-intensive problems

Innovation

Our Strategy

Building a Comprehensive HPC Portfolio that Delivers Differentiated Customer Value

- Providing complete and Integrated Solutions for targeted markets with best-in-class unique Sun products
- Innovation built on Open Standards at the component, product & solution level
- Making HPC simpler and easier Ensuring design and delivery excellence using strategic engagement teams
- Extending value through partnerships

Game Changers

Sun Fire X4540 Worlds first Storage Server Up to 48TB in 4RU

Multi-Core and Multi-Threading

CoolThread servers and Solaris optimizations for the most demanding thread-based applications

High-density QDR InfiniBand Switch

Open Source

Community Driven Development of HPC Software Solutions

GRID ENGINE

.l.u.s.t.r.e.

Open Storage

Easy-to-use storage appliances based on Open Standards

Sun Open Cloud Platform

Public & Open Clouds with leading Open Technologies

The Complete Picture

Choice and Flexibility

Complete Range of Compute Nodes (Blades or Rack Mounts) Based on:

Racks and Blades

Rack Mount Strengths

Ideal for smaller environments

- Fat or Thin nodes for mixed environments
 - Range of equipment configurations in a rack

Blade Strengths

- Less cabling
- Lower power requirements
- More reliable
- Chassis investment protection

Sun Blade 6048 Modular System

The first blade platform designed for extreme density and performance

- >7 TFLOPS, 768 cores per chassis/42U
 - 50% more compute power than HP C-Class
 - 71% more compute power than IBM BladeCenterH
- > 4 InfiniBand Leaf Switch Network Express Modules
 - Lowest cost per port with ultra-dense switch solution
- Pay as you grow platform ideal for fast growing businesses
 - Choose among SPARC, AMD Opteron and Intel Xeon CPU technologies
- Runs general purpose software
 - Custom compiles and tuning are not required
- Realize economies of scale savings in power and cooling

Sun Constellation System – Massive Horizontal Scale

Versatile Sun HPC Blade Portfolio

Sun Blade X6440

- 4 high performance Six-Core or enhanced Quad-Core AMD Opteron Processors
- 32 memory slots supporting DDR2, ECC DIMMs with 2x 2 GB, 2x 4 GB or 2x 8 GB memory kits; Up 256 GB of main memory using 8 GB DIMMs

nte

Sun Blade X6275

🖽 **vm**ware[.]

- 2 quad-core Intel Xeon Processors 5500 Series per compute node; for a total of four processors per server module
- Up to 96GB of main memory (per compute node); Up to 192GB (total) per server module

Sun Blade T6340

- 2-socket 6 or 8-core UltraSPARC T2 Plus processor
- Up to 128 simultaneous execution threads
- One floating-point processor per core and integrated, on-chip crypto accelerator
- 32 DIMM slots with maximum memory capacity of 256 GB

Microsoft

Sun Blade Independent IB I/O

Sun Blade 6048 InfiniBand QDR Switched Network Express Module

QDR IB PCIe ExpressModule

Industry's Only Chassis QDR Integrated Leaf Switch

Two onboard 36-Port QDR IB switches

3:1 Reduction in Cabling Simplifies Cable Management

- 30 ports of 4x IB QDR connectivity realized with only 10 physical 12x connectors
- Two Passthru GigE ports per server moduler module

- Two QDR InfiniBand QSFP ports
- x8 PCI Express Base 2.0 server connection
- Ideal for constructing "dual rail" InfiniBand clusters

Sun[™] Datacenter Infiniband Switch 648

Unparalleled HPC Fabric Scale-out for QDR (40Gbps) Attached Servers

Market Segment

Divisional and Supercomputing HPC

Design Center

- 648 QDR ports
- 216 physical ports
- Solution scales to 5,000+ nodes

Management

- ILOM agents for xVM
- Host based fabric management
- Host based subnet management
- Open Fabrics management stack

Sun[™] Datacenter Infiniband Switch 72 / 36

Market Segment

High performance data switch for small to mid-sized cluster deployments

Design Center

72 ports of QDR or DDR or SDR IB
Data throughput: 4.6 Tb/s
300 nS port-to-port latency
Scales up to 576 servers and storage systems

Market Segment

High performance data switch for enterprise applications

Design Center

36 ports of QDR or DDR or SDR IB Data throughput: 2.3 Tb/s 100 nS port-to-port latency Building block for hierarchical fabric topologies

KISTI

- World's largest Open Supercomputer
 - Largest supercomputing center in Korea
 - Germany's largest HPC center
- Sandia Worlds first & largest QDR Torus configuration

The Sun HPC Software Stack A Full Deck (Summary)

"Sun possesses a deep understanding of the requirements for HPC users and applications and has an unmatched portfolio of technology suitable for HPC, in which Solaris plays a key role"

Source: IDEAS International – Making Solaris Stick with High Performance Computing Systems

Platform Choice

• SPARC, AMD and Intel

Extreme Performance

- Optimized for large memory, NUMA, CMT, large core counts
- Real-time and fixed-priority schedulers
- Dynamic Tracing (DTrace)

Relentless Availability

- Robust and stable 15 years of continuous improvement
- Predictive self-healing
- Extreme observability

Open Storage

- Massive scale and performance
- Protect/archive critical data
- Leading open source storage stack

Sun Studio Software Overview

Download at:http://developers.sun.com/sunstudio

Integrated Developer Tool Chain

- C/C++/Fortran compilers
- Highly-tuned math and performance libraries
- OpenMP v3.0
- Sun Performance Analyzer (finds bottlenecks)
- Sun Thread Analyzer (detects data races and deadlock)
- NetBeans-based IDE

Why Sun Studio?

- Record-setting performance: Excellent auto-parallelization and advanced multi-core optimizations
- Dozens of recent industry-based benchmarks across Intel, AMD, Sun, Fijitsu architectures
- Heterogeneous development Solaris (x86, SPARC), Linux (x86)
- Developer services Community and/or Sun

Sun HPC ClusterTools

Download at: http://www.sun.com/clustertools

High-Performance MPI Libraries and Parallel Job Launcher

• Full MPI 2.1 standard

- Based on Open MPI and fully supported by Sun
- Solaris and Linux support
- Sun Studio and GNU support
- DTrace providers on Solaris
- Processor affinity support
 - IB, GbE, 10GbE and Myrinet MX
- MPI application profiling support
- Plug-ins for Sun Grid Engine, PBS Pro and Torque

2 2 3 6 5 6 6 6	5 7 8	Fin <u>d</u> Text:				- 民民聖		
MPI Timeline MPI Char	rt Functions	Callers-Callees	Source	Disassen	ontrols	MPI Timeline Contro	ols 4	
solute Time(sec) 2 3	4 5 6	7 8 9	10 1	1 12 13	💩 <1 I	> ⊽ ≙ 🖸 🦻		
D D	MMPI_Recv.MPI_F	MPI_RGMM6MM6MPI_F		MPI_Sempl_IMPIL	Filtering	9 Tr Tr		
M PL_Init	MMPL_SEMPMPL_N		Recv MPI_Re	WPI_Final	Messa	ges		
UninstriMPI_Init	MPLROMFLROM	MPI_ReIMENNIMEMPI_I	Recv MPI_Re	v MPI_Fin:U	100%		(
Un MPL_Init	MPL_ReiMPL_Rei		Red MPI_R	ecv MPI_FinU	Details			
UninsMPI_Init	NMPL_ReMIMPL_F		_Recv MPI_R	ecv MP_Final				
UninstrumentecMPI_Init	NMPI_RecvMPI_F	IPI_ROMPMEMMEMMEM	PI_RecMPI_S	MPI_RecMFI_Fina				
Uninstrum-MPI_Init	MMPI_RecvMPI_R		PL_Recv	MPI_RedMIMPI_FI				
Uninstrumen/MPI_Init	MMPI_RecvMPI_P	MPL.RemPMMMMPMPL	IPI_SeiMPI_Re					
lative Time(seo) 2 3	4 5 6	7 8 9	10 1	1 12 13				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6 6	7 8 0	10 1	1 12 13				
UninstrumentMPI_Init	MMPI_RecvMPI_P	иы вемьни умемы	IPLSeiMPLRe	WPL Beck WENPLU				

Sun Grid Engine (6.2 Update 4)(*) Download at: http://www.sun.com/sge

Dynamic Resource Management

- Job Scheduling
- Advanced reservation
- Resource monitoring
- Policy administration
- User authentication and access control
- Accounting and reporting

Jsed @ TACC; TITECH; Mentor Graphics; Rising Sun Pictures; Complete Genomics; DE Shaw and many, many others

- DRMAA Distributed Resource Management Application API
- QMaster the central component of a cluster
- Shadow Master a daemon that manages QMaster fail-over
- Execution Daemon the component responsible for executing jobs using compute resources
- ARCo Accounting and Reporting Console

(*) In July 2000 Sun Microsystems, Inc. acquired GRIDWARE, Inc.

Scalable Storage Cluster

Compute Engine Data Cache

- Extreme Multi-Petabyte scalability and aggregate bandwidth delivered with leading density and cost
 - Density ~240 Terabytes per rack
 - Bandwidth ~7.8 GB/second sustained per rack
 - Cost List price for under \$1 per GB
- Architected with Open Standards -Infiniband and Open Source software
- Ideal for cache and feeding the compute cluster
 - Leverages revolutionary **SunFire x45x0** hybrid data servers, low-latency IB interconnects, and Lustre – the industry leading parallel file system

Why Parallel Storage?

- Traditional storage architectures "break" under current HPC application demands
 - > NFS not designed to scale to level needed
 - > SANs not designed for data sharing, costly at scale
 - > Performance does not scale beyond a device

Parallel Storage provides

- Easy growth through horizontal scaling
- Very high aggregate I/O bandwidth and capacity for a single name space
- Support for 100s to 1000s of nodes and users

Unique Capabilities from Sun Sun Lustre Storage File System(*)

High performance and broad scaling

- From a few to over 100 GB/second
- From dozens to thousands of nodes

Breakthrough economics, up to 50% savings

 Built with standardized hardware and open source software vs. proprietary products

Simplifying Lustre for the mainstream

- Pre-defined modules speed deployment of parallel file system, available factory integrated
- Ease of use improvements patchless clients, integrated driver stack, LNET self-test, mount- based cluster configuration, many more

(*) In October July 2007 Sun Microsystems, Inc. acquired Cluster File Systems, Inc.

Sun Lustre Storage System Modules

Clients

Cluster computation, visualization, or desktop Linux nodes

 HA MDS Module Manages and stores metadata, such as filenames, directories, permissions and file layout

Standard & HA OSS Modules

Store application data, communicate directly to clients to transfer data

·lustre

File System Clients

- Clients access storage through a reliable, high speed protocol called LNET
- Typical clients
 - Are cluster computation, visualization, or desktop Linux nodes
 - Number from hundreds to thousands, can scale to tens of thousands
 - Each require tens to hundreds of MB/sec of I/O bandwidth
 - Connect via InfiniBand, GE or 10GE
- Client nodes **not** included as part of the system

-lustre

HA MDS Module Functions

- Manages and stores metadata, such as filenames, directories, permissions and file layout
- Separation of metadata from application data accelerates I/O operations
- Active/Passive server pair with shared metadata storage for availability
- Single HA MDS module supports up to 250 million files* and up to 32 petabytes of file system capacity

·lustre

*Based on typical 4KB metadata entry per file and MDS storage available

HA MDS Module

- SAS IO Module (SIM)
- Host A SAS
- Host B SAS

Hardware

- 2x Sun Fire X4250s each with
 - Dual, quad-core Intel Xeon CPUs, 8GB RAM, dual SAS 2.5" boot drives, Sun 8-port SAS HBA
 - > Sun DDR IB-HCA or Sun 10GE NIC
- Shared Sun Storage J4200
 - > 12x 15k rpm, 300GB SAS drives
 - > 2x SAS I/O Modules (SIM)

Software

 Sun Lustre & tools, network drivers (IB or TCIP/IP), Linux distribution

Availability

- Linux RAID 1+0 for metadata
- MDS configured in Lustre active/ passive pair
- Hot-swap redundant power and cooling
 Management
- Integrated LOM Service Processor

Standard & HA OSS Module Functions

- Store application data, communicate directly to clients to transfer data
- Lustre stripes file systems across OSS to aggregate bandwidth
- Quantity typically ranges from 1s to 10s, but can scale 100s
- Standard OSS Module
 - > Simple, high density, internal storage
- HA OSS module
 - Strong price/performance on shared storage with fail over for improved availability

·lustre

Standard OSS Module

Hardware

- Sun Fire X4540 Server with dual quadcore AMD Opteron processors
- 32 GB memory
- Sun DDR IB-HCA or Sun 10GE NIC
- 4x Gigabit Ethernet ports
- 48x 1TB SATA 3.5" disk drives

Software

 Sun Lustre & tools, network drivers (IB or TCIP/IP), Linux distribution

Availability

- Linux RAID 6 for user data
- Redundant hot-swap power and cooling
 Management
- Integrated LOM Service Processor

HA OSS Module

Primary Paths Connect to SIM A Secondary Paths Connect to SIM B

Hardware

- 2x Sun Fire X4250s each with
 - Dual, quad-core Intel Xeon CPUs, 8GB RAM, dual SAS 2.5" boot drives, Sun 8-port SAS HBA
 - > Sun DDR IB-HCA or Sun 10GE NIC
- 4x Sun Storage J4400 Arrays each with
 - > 24x 7200 rpm, 1 TB SATA drives

Software

 Sun Lustre & tools, network drivers (IB or TCIP/IP), Linux distribution

Availability

- Linux RAID 6 for user data
- Lustre OSS configured in active/active pair
- Hot-swap redundant power and cooling Management
- Integrated LOM Service Processor

Lustre in Action

·lustre

Sandia Red Storm

340 TB Storage, 50GB/s I/O throughput, 25,000 clients

Framestore

"The Tale of Despereaux" 200TB Lustre file system – averaged 1.2GB/s in sustained reads, peaks of 3GB/s, 5TB data generated per night from cluster of 4,000 cores interfacing with Lustre file system

German Climate Research Data Centre (DKRZ)

272 TB, Lustre and Storage Archive Manager, 256 nodes with 1024 cores

42% of top100 supercomputers using Sun Lustre

Data Movers

Long-Term Retention & Archive

- Provides a massive on-line/nearline repository to complement the Scalable Storage Cluster
- Leverages Sun StorageTek Tape Libraries, Modular Arrays and SAM-QFS
- Policy driven engine to automate moving data sets in to and results out of the Object Storage Farm
- Enables Tape Libraries as a large near-line repository
- Stores data in open formats (TAR) allowing technology refresh and avoiding vendor lock-in
- Pre-integrate systems arrive at ^{Data Movers} your site ready to run

Long-Term Retention and Archive

Sun Compute Cluster Pre-Integration

Your Choice of Configuration

Hardware Racked and Cabled

Software Installed and Configured

Sun Customer Ready Program Delivering "Business Ready HPC" Systems

Agile Development

- Up to 90% faster
- Tools to tailor to specific needs
- You concentrate on your core business

Higher Quality, Lower Risk

- Up to 80% less installation issues
- Integration and testing in the factory
- Uses Sun's IS09000 certified manufacturing processes

Visit: sun.com/hpc

and more

hpc.sun.com

Read the latest news, view the latest

offers, download the latest white papers

Resources

Download

Product: Deventioned: Services Source Tores = Construction Product: Code Searce Products Other Resources Product Image Code Samples Code Sa

Download and try out: Lustre Sun Grid Engine Sun HPC Software Linux Edition Sun HPC Developer Preview Visualization Software

Subscribe

Subscribe to Radio HPC via iTunes and get regular updates on HPC technology from Sun and our partners

Join

Learn More

SUN Products Downloads Services Solu

Imagine What You Can Accompl

Products & Dervices Industries Resources Get

By deploying Sun's powerful comprehensive portfolio of p services for all your High Performance Computing needs,

High Performance Computing

Join the online HPC community at: hpc.sun.com and collaborate with Sun engineers and experts

Watercooler

Visit the HPC Watercooler at: **blogs.sun.com/hpc**

and get the latest HPC news from around the globe

Try and Buy

Visit: sun.com/tryandbuy

to get a free 60-day trial on all of our new systems

THANK YOU.

Dalibor Kubacek dalibor.kubacek@sun.com

