

Application Ontology Manager for Hydra

Ján Hreňo1 , Peter Kostelník1, Martin Sarnovský2

1 Ekonomická fakulta TU Košice, Boženy Němcovej 32, 04200 Košice, Slovakia
2 Fakulta elektrotechniky a informatiky, Letná 9, 04200 Košice, Slovakia

{Jan.Hreno, Peter.Kostelnik, Martin.Sarnovsky}@tuke.sk

Abstrakt. The article describes main functionalities of an Ontology Manager
software developed for the Hydra project. The Ontology Manager is a service
based set of tools used to semantically enhance a middleware for networked
embedded system of devices. The core services of the Ontology Manager are
based on Open RDF Sesame. User interface is developed as an Eclipse plugin.

Keywords: Model driven development, Service driven architecture, Semantic
devices.

1 Introduction

Application Ontology Manager is a set of tools designed to run in the application part
of the Hydra project Service driven architecture [1]. It is based on the Sesame - the
open source Java framework for storage and querying of RDF data. User interface
using Eclipse plugin architecture was developed together with the service. In this
article we describe core functionalities of the Ontology Manager. Integral part of the
ontology manager is a set of basic ontologies describing devices [2].

2 Model driven device editor

Most of sophisticated applications working with various devices would require
searching of devices satisfying several requirements. Semantic descriptions of the
device models created in the device enabling process represent only the basic
information necessary for the device functionality. This information can be further
extended using the ontology administration tools included in the Integrated
Development Environment (IDE), which serves as the ontology and annotation editor.
Based on the most frequent application functionality and internal requirements [3],
the ontology has been extended with models of hardware, events provided by device,
energy profiles, and quality of service properties or security properties. Device
ontology was also extended by properties used to annotate the extended information
to device models. Using extended semantic descriptions, the devices and services
have the full semantic support and are accessible through query interfaces and whole

79

process of knowledge extension is guided by the ontology. Two ontologies supporting
the annotation process were created.

Static taxonomy model - the container for all information, which serves as the
taxonomies containing instances, which can be annotated to the devices, these static
instances, when annotated to device parts, can be further used as values in searches.

Annotation property model - to be able to decide, which behaviour of IDE should
be used in what context, the owl:DatatypeProperty and owl:ObjectProperty classes
was extended with the custom classes specifying the annotation or form properties
(Fig. 1). The properties extending owl:ObjectProperty are of two types:

• FormProperty ensures that IDE will automatically generate the form including
all literal properties of the class assigned as the property range.

• For AnnotationProperty, the IDE generates the tree browser with the root class
assigned as the property range.

The owl:DatatypeProperty is extended by the class FormFieldProperty, which was
created in order to define some special literals, which can be edited.

Fig. 1. The annotation property model.

FormFieldProperty enables to select, which properties can be edited. The
difference from FormProperty is, that FormProperty expect all literals to be editable.
FormFieldProperty allows specifying, which particular properties can be edited. All
properties may be single or multi value, so IDE will add or replace the newly added
property value.

3 Querying with expectations and requirements

Application developers need to query ontology for various devices or their services
actually presented in runtime e.g. to retrieve specified device or service properties,
which should be used for further computations in the application logics. For purposes
of model driven query building and query evaluation, the simple query language was
developed. Each query is composed of comma-separated clauses. Each clause
contains the slash-separated sequence of properties starting from device/service
instance and defines the target value – the last item in the sequence, which serves as
the filter for results. The target value of the clause may be of two types:

1. Property without defined value: serves as the existence filter – device has the

80

property attached, does not matter, what is the value of the property.
2. Property with defined value: serves as the value filter – device has the

property set to concrete value. The value may be the value of literal property
or the instance from static taxonomy.

The requirements structure is similar; the only difference is that requirements must
not contain the property values definitions. The reason is, that requirements may only
specify what properties must be retrieved (not what should be the property value).
Queries are translated to SPARQL queries and executed. Then, each retrieved result is
queried for each requirement and the value of requirement is attached.

4 Semantic devices

Each physical device provides a set of specific services, which can be directly used by
the application developer. The concept of semantic devices brings the idea of
specifying the application specific behaviour achieved as the composition of several
devices organized into complex units. Semantic devices can include physical, but also
other semantic devices. Each semantic device is defined by a set of semantic services.
Each semantic service is composed by a set of requirements in terms of preconditions.
There are two kinds of preconditions. Static preconditions represent the list of
persistent identifiers of concrete devices, which will appear in the application and will
be used in semantic service execution in runtime. Dynamic preconditions used in the
runtime to generate the candidate devices matching the requirements specified by the
query. Developer has to define and implement semantic device services using the
DDK (Device Development Kit) tool. In this case, the preconditions defined for each
service are used to automatically generate the class of proxy implementation using the
configuration attached to the semantic models of used devices. At the runtime, each
time a new device joins the application, the semantic devices are rediscovered and the
required devices satisfying defined preconditions are automatically tied with the
semantic devices.

5 Application context awareness

We have developed ontologies containing the application model, which can be
instantiated in the IDE. User can select the required application type, create the
instance and create the application entities using the model driven application editor.
A device is attached to an application entity using the PID (Persistent ID) identifier,
as in application modelling phase it is required to know exactly which devices are in
relation with the particular application entity. Application entities are related to the
device PIDs using instances of specific class named rule:DevicePID having only one
string property rule:PID. This information represents, which devices are related to
application entities using PIDs. For querying purposes, when searching for required
devices, also inverse relation is needed. This information has to be inferred in the
runtime; therefore a resolver was developed responsible for generating this
information. We created an ontology defining the rule:generatesInverseProperty,

81

which can be attached to any owl:ObjectProperty instance. This property defines
which property has to be generated as the inverse property. It is expected, that
application property, such as:
Person ownsDevice DevicePID
Generate inverse properties, such as:
ownsDevice generatesInverseProperty ownedBy.
When new device gets the PID information, all relations to application entities are
identified and attached to the new device run-time instance. Then it is possible to ask
queries containing application context information:
device:hasHardware/hardware:hasDisplay,
application:locatedIn/application:name;"MyLivingRoom"^^xs
d:string

Fig. 2. Example of application.

Acknowledgments. The work was supported within the FP6 IST-2005-034891
HYDRA (50%), VEGA 1/0042/10 (25%) project and is the result of the project
implementation: Development of the Center of Information and Communication
Technologies for Knowledge Systems (ITMS project code: 26220120030) supported
by the Research & Development Operational Program funded by the ERDF (25%).

6 References

1. Eisenhauer, M., Prause, Ch., Schneider, A., Scholten, M., Zimmermann, A.: Initial
architectural design specification, Public deliverable D3.4, Hydra project,
http://www.hydramiddleware.eu

2. Sarnovský, M., Kostelník, P., Hreňo, J., Butka, P.: Device Description in HYDRA
Middleware. In Proceedings of the 2nd Workshop on Intelligent and Knowledge oriented
Technologies 2007, WIKT 2007, Košice, Slovakia, November 2007 (published 2008),
pp.71-74, ISBN 978-80-89284-10-8

3. Zimmermann, A., Jahn, M.: Updated Systems Requirements Report, Public deliverable
D2.7, Hydra project, http://www.hydramiddleware.eu

